A Theory of Complexity of Monadic Recursion Schemes
نویسنده
چکیده
— Complexity of a monadic recursion scheme is defined through numerical characteristics of trees representing its computations. A class of such complexity characteristics of trees essentially unlike the computation time: so called mimeoinvariant complexity measures, is introduced which induce several dense hiérarchies of complexity classes of monadic recursion schemes of unbounded complexity and infinité hiérarchies of bounded complexity classes. Simple conditions are found under which a function is a nonreducible upper bound of complexity of a monadic recursion scheme. Résumé. — On définit la complexité d'un schéma récursif monadique à Vaide de propriétés numériques des arbres qui représentent ses calculs. On introduit une classe de telles propriétés de complexité des arbres, appelées les mesures de complexité miméoinvariantes, qui sont essentiellement différentes du temps de calcul, et qui induisent plusieurs hiérarchies denses de classes de complexité pour les schémas récursif s monadiques de complexité non bornée et des hiérarchies infinies de classes de complexité bornée. On donne des conditions simples qui assurent qu'une fonction est une borne supérieure irréductible pour la complexité d'un schéma récursif monadique.
منابع مشابه
Program Schemes, Recursion Schemes, and Formal Languages
This paper presents general methods for studying the problems of translatability between classes of schemes and equivalence of schemes in a given class. There are four methods: applying the theory of formal languages, programming, measuring the complexity of a computation, and "cutting and pasting." These methods are used to answer several questions of translatability and equivalence for classe...
متن کاملEquivalence Problems for Deterministic Context-Free Languages and Monadic Recursion Schemes
In this paper we consider how certain properties of monadic recursion schemes are related to those of cteterministic context-free languages. Previous work showed only how to translate properties of schemes into properties of languages [3]. This was accomplished by a construction that when given any monadic recursion scheme S, produced a deterministic pushdown automaton (abbreviated dpda) accept...
متن کاملThe evaluation of first-order substitution is monadic second-order compatible
We denote rst-order substitutions of nite and in nite terms by function symbols indexed by the sequences of rst-order variables to which substitutions are made. We consider the evaluation mapping from in nite terms to in nite terms that evaluates these substitution operations. This mapping may perform in nitely many nested substitutions, so that a term which has the structure of an in nite stri...
متن کاملHalting and Equivalence of Schemes over Recursive Theories
Let Σ be a fixed first-order signature. In this note we consider the following decision problems. (i) Given a recursive ground theory T over Σ, a program scheme p over Σ, and input values specified by ground terms t1, . . . , tn, does p halt on input t1, . . . , tn in all models of T ? (ii) Given a recursive ground theory T over Σ and two program schemes p and q over Σ, are p and q equivalent i...
متن کاملDecidability Results for the Boundedness Problem
We prove decidability of the boundedness problem for monadic least fixed-point recursion based on positive monadic second-order (MSO) formulae over trees. Given an MSO-formula φ(X,x) that is positive in X, it is decidable whether the fixed-point recursion based on φ is spurious over the class of all trees in the sense that there is some uniform finite bound for the number of iterations φ takes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ITA
دوره 15 شماره
صفحات -
تاریخ انتشار 1981